BigQuery ML Time-series Forecasting (ARIMA)
By Google
Build Explores that allow business users to create machine learning models for time-series forecasting.
Build Explores that allow business users to create machine learning models for time-series forecasting.
Overview
Install this block for free by importing the project(s) from the GitHub repository linked at the top of the listing.
This is not an officially supported Google product.
Using this Block, you can integrate Looker with BigQuery ML Time-series (ARIMA Plus) models to get the benefit of forecasting with advanced analytics without needing to be an expert in data science. BigQuery ML ARIMA Plus model includes the following functionality:
- Infer the data frequency of the time series
- Handle irregular time intervals
- Handle duplicate timestamps by taking the mean value
- Interpolate missing data using local linear interpolation
- Detect and clean spike and dip outliers
- Detect and adjust abrupt step (level) changes
- Detect and adjust holiday effects
- Detect and adjust for seasonal patterns
This Block gives business users the ability to do time-series forecasting from a new or existing Explore. Explores created with this Block can be used to train multiple time-series models, evaluate them, and access their forecasts in dashboards or custom analyses.
Learn more in the associated BigQuery ML Tutorial.
Step by Step instructions for implementation are in the Block Readme